Package: bigergm 1.2.3

bigergm: Fit, Simulate, and Diagnose Hierarchical Exponential-Family Models for Big Networks

A toolbox for analyzing and simulating large networks based on hierarchical exponential-family random graph models (HERGMs).'bigergm' implements the estimation for large networks efficiently building on the 'lighthergm' and 'hergm' packages. Moreover, the package contains tools for simulating networks with local dependence to assess the goodness-of-fit.

Authors:Cornelius Fritz [aut, cre], Michael Schweinberger [aut], Shota Komatsu [aut], Juan Nelson Martínez Dahbura [aut], Takanori Nishida [aut], Angelo Mele [aut]

bigergm_1.2.3.tar.gz
bigergm_1.2.3.zip(r-4.5)bigergm_1.2.3.zip(r-4.4)bigergm_1.2.3.zip(r-4.3)
bigergm_1.2.3.tgz(r-4.4-x86_64)bigergm_1.2.3.tgz(r-4.4-arm64)bigergm_1.2.3.tgz(r-4.3-x86_64)bigergm_1.2.3.tgz(r-4.3-arm64)
bigergm_1.2.3.tar.gz(r-4.5-noble)bigergm_1.2.3.tar.gz(r-4.4-noble)
bigergm_1.2.3.tgz(r-4.4-emscripten)bigergm_1.2.3.tgz(r-4.3-emscripten)
bigergm.pdf |bigergm.html
bigergm/json (API)

# Install 'bigergm' in R:
install.packages('bigergm', repos = c('https://corneliusfritz.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • bali - Bali terrorist network
  • bunt - Van de Bunt friendship network
  • kapferer - Kapferer collaboration network
  • reed - A network of friendships between students at Reed College.
  • rice - A network of friendships between students at Rice University.
  • state_twitter - Twitter (X) network of U.S. state legislators
  • toyNet - A toy network to play 'bigergm' with.

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.60 score 4 scripts 624 downloads 9 exports 67 dependencies

Last updated 1 months agofrom:d25ea74d1f. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-win-x86_64WARNINGNov 23 2024
R-4.5-linux-x86_64WARNINGNov 23 2024
R-4.4-win-x86_64WARNINGNov 23 2024
R-4.4-mac-x86_64WARNINGNov 23 2024
R-4.4-mac-aarch64WARNINGNov 23 2024
R-4.3-win-x86_64WARNINGNov 23 2024
R-4.3-mac-x86_64WARNINGNov 23 2024
R-4.3-mac-aarch64WARNINGNov 23 2024

Exports:aribigergmest_betweenest_withinget_between_networksget_within_networkspy_depsimulate_bigergmyule

Dependencies:bitbit64cachemclicliprcodacodetoolscpp11crayonDEoptimRdplyrergmergm.multievaluatefansifastmapforeachgenericsglueherehighrhmsigraphintergraphiteratorsjsonliteknitrlatticelifecyclelpSolveAPImagrittrMatrixmemoisenetworkpillarpkgconfigpngprettyunitsprogresspurrrR6rappdirsrbibutilsRcppRcppArmadilloRcppTOMLRdpackreadrreticulaterlangrlerobustbaserprojrootstatnet.commonstringistringrtibbletidyrtidyselecttrusttzdbutf8vctrsvroomwithrxfunyaml

An Introduction to Estimating Exponential Random Graph Models for Large Networks with bigergm

Rendered frombigergm.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-06-14
Started: 2024-06-12